Welcome to AssignmentCache!

Search results for 'cit-150 chapter5 individual case'

Items 11 to 20 of 222 total

per page
Page:
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5

Grid  List 

Set Descending Direction
  1. DBM 380 Week 3 Art Museum Access Database

    DBM 380 Week 3 Entity Relationship Diagram

    $15.00

    Individual ERD Creation Project The following assignment is based on the database environment chosen and discussed in the Week Two Individual Assignment. Use a Microsoft® Visio® diagram to create a detailed ERD using the data specifications noted in the Week Two Individual Assignment. Make any necessary changes provided in your faculty’s feedback. · Use a Microsoft® Access® database to create the preliminary database tables, columns with data types, primary keys, and relationships. Learn More
  2. DBM 380 Week 4 Art Museum Nomalized Access Database

    DBM 380 Week 4 Normalization of ERD

    $15.00

    Individual Normalization of the ERD The following assignment is based on the database environment chosen and created in the Week Three Individual Assignment. Your database project must meet the following assessment requirements: Design and develop a database using professional principles and standards. · Provide a logical and physical design of the database. · Use relational database software application to develop database. · Provide an entity relationship diagram. · Normalize the database. · Generate and provide test data. Use a Microsoft® Visio® diagram to normalize the ERD to third normal form (3NF). Use the Microsoft® Access® database created in Week Three to create a minimum of 10 rows of test data in each table. Also, create at least one query that joins two tables and returns values from both tables. Note. Only the Microsoft® Visio® diagram must be normalized to the 3NF. The 3NF is not required for a Microsoft® Access®database. Submit the ERD and final database to the appropriate Assignment link. Learn More
  3. DBM 449 Lab 4 Oracle Object Types

    DBM 449 Lab 4 Oracle Object type

    $20.00

    L A B O V E R V I E W

    Scenario/Summary
    For this lab you will begin by using the same set of tables that you used for Lab 1 so be sure that you are connected to Oracle as the DBM449_USER user. The objective of this lab will be to create a series of object-relational tables using the SQL*Plus editor that will allow data to be stored in a more "real-world" format. Data for your new tables can be found in the file Lab4_data.txt associated with this link. You will need to manipulate the data in various ways, but the file will give you access to the raw data to use.
    To record your work for this lab use the LAB4_Report.doc found in Doc Sharing. As in your previous labs you will need to copy/paste your SQL statements and results from SQL*Plus into this document. This will be the main document you submit to the Drop Box for Week 4.

    L A B S T E P S
    STEP 1: Create a table with a column data type

    Modify the design of the COURSE table created in iLab 1 to incorporate the use of the column abstract data type.

    1. Write and execute the SQL to create a single object type called COURSE_OBJ1 that contains both the attributes course code and course name. Remember that with abstract objects you must use the / after the CREATE statement to execute it.
    2. Next, write and execute the SQL to create a table called NEW_COURSE1 that contains COURSE_OBJ1 along with the original attributes from the original COURSE table. Keep in mind what attributes the new object type COURSE_OBJ1 contains. Your table should have a total of 4 individual columns when finished.
    3. Using the data from the LAB4_DATA file create and execute the insert statements to load the new table NEW_COURSE1. SUGGESTION: Using the Lab4_data file create a script file of your insert statements and then run the script file. Remember that you will need enclose some of the data in single quotes depending on if it is character, date, or numeric data.
    4. Run DESCRIBE command to describe structure of table NEW_COURSE1.
    5. SET DESCRIBE DEPTH 2 and run DESCRIBE NEW_COURSE1 again.
    6. Execute a SELECT statement to query the data from the new table (DO NOT use a SELECT * type query). Use the COLUMN column_name FORMAT A## session command to format columns within the table to keep the result set data from wrapping around. Be sure that you properly display data inside the object column. (HINT: When querying attributes of an abstract data type, you must use a correlation variable for the table.)

    STEP 2: Create an object table with a row data type
    Create a second COURSE table, this time as an object table using the row abstract data type.

    1. Write and execute the SQL to create an object called COURSE_OBJ2 that contains the attributes course code, course name, course date, instructor, and location.
    2. Write and execute the SQL to create a table called NEW_COURSE2 with a single column defined using the COURSE_OBJ2 object.
    3. Using the data from the LAB4_DATA file create execute the insert statements to load the new table NEW_COURSE2.
    4. Execute a SELECT statement to query the data from the new table (DO NOT use a SELECT * type query).

    STEP 3: Create a Varying Array
    Modify the design of the CLIENT table created in iLab 1 to incorporate the use of the Varying Array.

    1. Write and execute the SQL to create a Varying Array to represent the phone contact information for the client (up to 3 phone numbers). Name the varying array as PHONE_LIST.
    2. Write and execute the SQL to create a table called NEW_CLIENT that contains the attributes that the original CLIENT table contained plus the phone list array.
    3. Using the data from the LAB4_DATA file create execute the insert statements to load the new table NEW_CLIENT.
    4. Execute a SELECT statement to query the data from the CLIENT_NO and CLIENT_NAME columns along with the data in the column containing the phone number Varray (You cannot use a SELECT * type query for this step).

    Deliverables
    Submit your completed Lab 4 Report to the Dropbox. Your report should contain copies of each query and result set outlined in the lab along with the requested explanation of whether or not it satisfied the business requirement outlined for that particular section of the lab.

     

    Learn More
  4. DBM 449 Lab 5 SQL Audit and Profile Management

    DBM 449 Lab 5 Audit and Profile Management

    $20.00

    In your lab for this week you are going to work with three different areas and processes within the Oracle Database that can be used to control data security. Each of these three processes has its own distinctive application to providing levels of security. In each case the individual processes deal with either limiting a users access to the database, limiting access to processes within the database, or keeping track of what the user is doing while in the database.

    For the lab you will be using the SCOTT user which is already created in your instance. In Step 4 you will also be asked to shutdown you instance, make some edits to the init.ora file for your instance and then restart the instance. If you are not comfortable with this process which was first introduced to you in DBM438 the refer to the iLab Manual found in week 1 for guidance.

    To record your work for this lab use the LAB5_Report.doc found in Doc Sharing. As in your previous labs you will need to copy/paste your SQL statements and results from SQL*Plus into this document. This will be the main document you submit to the Dropbox for Week 5.

    LAB STEPS

    STEP 1: Define a New Profile

    Oracle provides the ability to set expirations, limit the reuse, and define the complexity of passwords. In addition, accounts can be locked if the password is entered incorrectly too many times. In this section of the lab we are going to create a custom profile that will then be applied to the SCOTT user.

    1. To begin, log into your instance as the SYS user.
    2. Write SQL script that will create a new profile named DBM449_SCOTT_PROFILE that will do the following:
      • Limit the number of failed login attempts to 3 in a row.
      • Limit the overall connection time to 10 hours (we will give him a little leeway incase he has to work overtime).
      • Allow a session to be idle no more than 1 hour.
      • Change the password every 60 days.
      • Allow the user 3 days to change the password after it expires.
      • Not allow a previous password be reused before there have been three password changes.
    3. Execute your pfile script and verify that the profile has been created by running a query against the DBA_PROFILES view in the data dictionary. Limit your output to ONLY the DBM449_SCOTT_PROFILE parameters.

    Be sure to copy/paste your script and results sets output to the appropriate section in the Lab5_report document.

    STEP 2: Testing the New Profile

    Now that we have a new profile for the SCOTT user we need to verify that it works properly. For obvious reasons there are going to be parts of the profile that we cannot test within the confines of this lab due to time constraints, but we can test to verify that the SCOTT user is being controlled by the profile.

    1. The first thing we need to do is assign the profile to the SCOTT user. While still logged into your instance as the SYS user write and execute the SQL command that will assign the new SBM449_SCOTT_PROFILE profile to the SCOTT user.
    2. Now log into SCOTT (password is TIGER). Remember that you must supply the database instance name when logging in from the SQL> prompt just as you do when using the login window, i.e. CONN SCOTT/TIGER@DB####.WORLD.
    3. There are several things that we can test related to the logging in and changing a password so here we go.
      • You should now be successfully connect to the SCOTT user. Write the connect command again on this time use an incorrect password. NOTE: you should get a warning message stating that you are no longer connected to Oracle. That is fine, just keep trying to log in.
      • Repeat the above process until you get the ORA-28000: the account is locked error which will indicate that the profile is working here.
      • At this point we need to get the account unlocked so you will need to login to your instance as the SYS user and unlock the SCOTT account BUT DO NOT LOG BACK INTO THE SCOTT USER YET.
      • Now we can test the password reuse parameter. To do this we must EXPIRE the current password. Write and execute the SQL command to expire the password for the SCOTT user.
      • Now log back into the SCOTT user. You should receive a message stating that the password has expired (ORA-28001: the password has expired) and then prompting you to change the password.
      • Try to reuse the TIGER password. You should receive the following - ORA-28007: the password cannot be reused.
    4. Now log into the SCOTT user again and this time change the password to LION to complete this step of the lab.

    Be sure to copy/paste your script and results sets output to the appropriate section in the Lab5_report document.

    STEP 3: Using the PRODUCT_USER_PROFILE table

    As the owner of a schema a user has certain inherited privileges that would allow the user to pass access to his/her own objects on to other users. Often times this can open up data to scrutiny by individuals who probably do not need to have access to it. These types of decisions should always be made by the DBA in charge of the database. One mechanism the DBA has to keeping users from using these inherited privileges is by excluding those commands using the PRODUCT_USER_PROFILE (PUP) table. In this section of the lab we are going to do this to the SCOTT user by setting up the scenario that will prohibit him from giving the user GEORGE (created in lab 2) access to the EMP table.

    1. For this section and remainder of the lab you must have the PRODUCT_USER_PROFILE successfully loaded and accessible in your instance. The creation of this profile was one of the first things done back in Lab 1 when you ran the PUPBLD.SQL script. If you are getting an error message stating "Error accessing PRODUCT_USER_PROFILE" when you log in as the DBM449_USER or the SCOTT user then this profile is not successfully installed. Work with your instructor to figure out why your script from Lab 1 did not work correctly. Until this is resolved you will not be able to complete the remainder of the lab.
    2. If you have the PRODUCT_USER_PROFILE successfully working then log in to your database instance as the SYS user.
    3. Now we need to limit SCOTT from being able to use the GRANT command.
      • Insert the proper values into the PRODUCT_USER_PROFILE table that will keep the SCOTT user from using the GRANT command. Remember that some of the values in your insert statement must be in upper case and some will need to be in mixed case. Once you have done this then query the table to verify the insert (REMEMBER: you cannot query the table as the SYS user, only as the SYSTEM user).
      • Now we need to test our above settings and make sure they are working.
      • Connect to the SCOTT user (remember that you changed the password to LION).
      • Write and execute the statement that would GRANT the user GEORGE the ability to write a select statement and see the data in the EMP table owned by SCOTT. You should receive the following message - SP2-0544: Command "grant" disabled in Product User Profile.
    4. This verifies that you have now disabled the ability of the SCOTT user to allow another user to access any of the data in his schema.

    Be sure to copy/paste your script and results sets output to the appropriate section in the Lab5_report document.

    STEP 4: Setting up the Database to use Auditing

    Being able to audit what, when and where people are doing things in the database can be a very enlightening thing for a DBA. It can also be a very important tool in working with Data Security. Oracle provides the ability to do various types of auditing, but it takes some special setting up of the environment for this to work. In this step we are going to make the necessary adjustments to the current Oracle instance so that we can enable auditing and make some tests. If you need to review the processes to be used here then refer to the iLab Manual in week 1.

    1. First you need to make sure that you are logged into your instance as the SYS user.
    2. At this point issue a SHUTDOWN IMMEDIATE command to shut down you database instance.
    3. Once the instance is shut down you need to go into your Citrix Windows Explorer application, find your database instance set of directory folders, drill down to the pfile directory folder and open your init.ora file found in that folder.
    4. Under the section titled "Security and Auditing" you need to add the parameter AUDIT_TRAIL and set the parameter to DB_EXTENDED. This will allow the SQL_TEXT column of the DBA_AUDIT_OBJECT view to be populated. Save and close the file and then go back to your SQL*Plus session.
    5. Now using the init.ora file, start your instance back up to an OPEN status. You can do this by issuing a STARTUP PFILE= statement and pointing to your init.ora file.
    6. Once you have completed this process you are ready to begin setting up the database to audit some activity.

    Be sure to copy/paste your script and results sets output to the appropriate section in the Lab5_report document.

    STEP 5: Creating an Audit Trail

    Oracle permits audit trails to be generated for session login attempts, access to objects, and activity performed on objects. Again using the SCOTT user we are going to set up several scenarios for auditing what SCOTT does while in a session. NOTE: if you need to work through this process several times you can delete the values in the AUD$ base table by issuing the TRUNCATE TABLE AUD$ command while logged in as the SYS user.

    1. Make sure that you are connected as user SYS.
    2. Display value of the parameter AUDIT_TRAIL. For the VALUE column you should have a value of DB_EXTENDED.
    3. Now we can set up auditing to track what goes on in the database.
      • Write SQL statements to audit successful and unsuccessful login attempts by SCOTT.
      • Write SQL statement to audit any successful INSERT, UPDATE or DELETE performed on table DEPT in scott's schema.
    4. Now we need to test the audits to verify that they work.
      • Log into the SCOTT user (remember that the password is LION) and perform the following:
      • write and execute an UPDATE statement that will change the value in the LOC column of the DEPT table to MIAMI where the DEPTNO value is 10.  Be sure to issue a COMMIT.
      • Write and execute the INSERT statement that will in insert the following values into DEPT - (50, 'LEGAL', 'HOUSTON').  Be sure to issue a COMMIT.
      • Write and execute the DELETE statement that will delete the row from the DEPT table that was just inserted in the step above.  Again, be sure to issue a COMMIT.
      • Try to reconnect to the SCOTT user with an invalid password.
      • Now connect back to the SYS user.

    Now we need to see if our auditing worked.

    1. While logged into your instance as the SYS user, query the DBA_AUDIT_OBJECT view of the data dictionary for the user name of the account (Not the OS), the object owner, the object name, the action name and the SQL command (text) from the DBA_AUDIT_OBJECT view in the Data Dictionary.
    2. Did you notice that the entries for successful logon and unsuccessful logon attempts were not there. Now query the user name, action name and return code values in the DBA_AUDIT_SESSION view. You should find that information here.

    Be sure to copy/paste your script and results sets output to the appropriate section in the Lab5_report document.

    Deliverables

    Submit your completed Lab 5 Report to the Dropbox. Your report should contain copies of each query and result set outlined in the lab along with the requested explanation of whether or not it satisfied the business requirement outlined for that particular section of the lab.

    Learn More
  5. DBM 449 Lab 6 SQL Analytical Extensions and Materialized Views

    DBM 449 Lab 6 SQL Analytical Extensions and Materialized Views

    $20.00

    For the lab this week we are going to look at how the ROLLUP and CUBE extensions available in SQL can be used to create query result sets that have more than one dimension to them. Both of these extensions are used in conjunction with the GROUP BY clause and allow for a much more broad look at the data.

    The first thing you will do for this lab is download the lab6_create.sql file and run the file in your database instance. This file will log into the DBM449_USER and then create and populate a set of tables that will be used for this lab.  Instructions for this are outlined in Step 1.

    To record your work for this lab use the LAB6_Report.doc found in Doc Sharing. As in your previous labs you will need to copy/paste your SQL statements and results from SQL*Plus into this document. This will be the main document you submit to the Dropbox for Week 6.

    LAB STEPS

    STEP 1: Setting up Your Instance

    For this lab you will be using a different user and set of tables than you have used so far for other labs. To set up your instance you will need to do the following.

    1. Download the lab6_create.sql file associated with the link to either the C drive on your computer or the F drive in your Citrix account.
    2. Open up the file and edit the login information at the top for the new user that is being created. You will need to replace the @ORACLE piece with the specifics for your instance name. DO NOT include AS SYSDBA after the name of your instance for this login.
    3. Now log into your instance as the SYS user. Run the script. The script is too long to copy/paste it into your SQL*Plus session so you should run the script using the @ sign from the SQL> prompt.
    4. Once the script has finished running then issue a SELECT * FROM TAB; sql statement. The result set will have tables from other labs as well but you want to make sure that you see the following tables listed.

    TNAME                          TABTYPE CLUSTERID
    ------------------------------ ------- ----------
    SUPPLIER                       TABLE
    PRODUCT                        TABLE
    DISTRICT                       TABLE
    CUSTOMER                       TABLE
    TIME                           TABLE
    SALES                          TABLE

     

    STEP 2: Using the ROLLUP Extension 

    In this section of the lab you are going to create a sales report that will show a supplier code, product code and the total sales for each product based on unit price times a quantity. More importantly the column that shows the total sales will also show a grand total for the supplier as well as a grand total over all (this will be the last row of data shown). To do this you will use the ROLLUP extension as part of the GROUP BY clause in the query. Use aliases for the column names so that the output columns in the result set look like the following.

    SUPPLIER CODE PRODUCT    TOTAL SALES
    ------------- ---------- -----------

    For this report you are going to use the SALES, PRODUCT and SUPPLIER tables. You should be able to write your query using NATURAL JOIN but if you feel more comfortable using a traditional JOIN method that will work just as well. When finished you should have a total of 16 rows in your report and the grand total amount should show 2810.74.

    Be sure to copy your SQL code and the result set produced and paste it into the appropriate place in the LAB6_REPORT.

    STEP 3: Using the CUBE Extension

    In this section of the lab you are going to create a sales report that will show a month code, product code and the total sales for each product based on unit price times a quantity. In this report the column that shows the total sales will also show a subtotal for each month (in this case representing a quarter) . Following the monthly totals for each product and the subtotal by month then the report will list a total for each product sold during the period with a grand total for all sales during the period (this will be the last row of data shown). To do this you will use the CUBE extension as part of the GROUP BY clause in the query. Use aliases for the column names so that the output columns in the result set look like the following.

         MONTH PRODUCT    TOTAL SALES
    ---------- ---------- -----------

    For this report you are going to use the SALES, PRODUCT and TIME tables. You should be able to write your query using NATURAL JOIN but if you feel more comfortable using a traditional JOIN method that will work just as well. When finished you should have a grand total amount of 2810.74 (same total as in the step 2).

    Be sure to copy your SQL code and the result set produced and paste it into the appropriate place in the LAB6_REPORT.

    STEP 4: Materialized Views and View Logs

    Materialized views, sometimes referred to as snapshots are a very important aspect of dealing with data when doing data mining or working with a data warehouse. Unlike regular views, a materialized view does not always automatically react to changes made in the base tables of the view. To help keep track of changes made to the base tables you must create what is call a Materialized View Log on each base table that will be used in the view. In this step of the lab we will do this.

    For the Materialized View we are going to create we are going to use the TIME and the SALES tables. Before we can create the view you will need to create a Materialized View Log on each of these two tables that will keep track of the ROWID and Sequence and include new values that have been added to the base table.

    Be sure to copy your SQL code and the result set produced and paste it into the appropriate place in the LAB6_REPORT.

    STEP 5: Creating and Using the Materialized View

    Now that we have our logs created we can progress on to the view itself. For this part of the lab you are going to create a Materialized View, demonstrate that the view works, insert a row of data into one of the base tables and then update the view. Finally, you will show that the new data is in the view. The following steps will help move you through this process.

    1. First, write the SQL CREATE statement that will create a Materialized View based on the following:
      • Name the view SALESBYMONTH.
      • Include clauses that will build the view immediately, completely refresh the view, and enable a query rewrite.
      • For the columns of the view you want to show the YEAR, MONTH, PRODUCT CODE, a TOTAL SALES UNITS, and a TOTAL SALES.
      • You will want to group the columns by year, month and product code respectively.
    2. Execute your script to create the view and then issue a SELECT * FROM SALESBYMONTH.

    The output columns from your view should look similar to the following (use aliases to format the column headings) and you should have 18 rows in the result set.


                                      YEAR      MONTH PRODUCT CO UNITS SOLD SALES TOTAL
                                  -------- ---------- ---------- ---------- -----------

    Now we are going to add some data and update the view. Because we have several derived columns in out view we will have to force the update as Oracle will not automatically update a view with this configuration.

    1. To begin with, insert the following data into the SALES table - (207, 110016, 'SM-18277',1,8.95).
    2. Now we are going to use a subprogram within the Oracle built in package DBMS_MVIEW. The REFRESH subprogram within this package will update our view so that we can see the new data.
    3. Write an SQL EXECUTE statement that will use the REFRESH procedure in the DBMS_MVIEW package (HINT: packagename.subprogram). The REFRESH subprogram accepts two parameters; the name of the materialized view to refresh, and either a 'c', 'f', or '?'. For the purposes of the lab use the 'c'. (you can refer back to pages 654-659 of the DBA Handbook readings for week 3).
    4. Execute your statement to update the view and then query the view once again.

    You should now see that the row for units sold in month 10 for SM-18277 has increased from 3 to 4 and total sales amount has gone from 26.85 to 35.80.

    Be sure to copy your SQL code and the result set produced and paste it into the appropriate place in the LAB6_REPORT.

    Deliverables

    Submit your completed Lab 6 Report to the Dropbox. Your report should contain copies of each query and result set outlined in the lab along with the requested explanation of whether or not it satisfied the business requirement outlined for that particular section of the lab.

    Learn More
  6. PCI Warranty Call Center ERD

    CIS 355 PCI Warranty Call Center Case ER Diagram

    $15.00

    CIS 355 Term Project Part I For your term project, you are expected to design and implement a relational database to meet the requirements described in the PCI Warranty Call Center Case. Deliverables Part I - Project Design Document This document should have the following components: 1. A conceptual ER model/diagram of PCI’s data requirements. The diagram should include all relevant entities, attributes and relationships. For each entity, specify the identifier (primary key). Specify relationship names and cardinality constraints. Indicate which attributes are required, composite, multi- valued, and/or derived (Note: by default, an attribute is assumed to be optional, simple, single-valued and not derived). Indicate which entities are associative. Follow consistent naming conventions for entities and attributes. Use modeling/diagramming software to create the ER Diagram. 2. A list of the normalized relations (the logical model) and their attributes. For each relation, primary and foreign keys should be clearly indicated. Note: Use the format that we will be discussing in class for presenting your logical model. 3. A list of assumptions (if any) made about the information requirements presented in the case. Note: the assumptions should be reasonable and should not contradict the facts of the case. 4. A data dictionary that defines the metadata for the logical model. The data dictionary should include: the definition of each relation and attribute; the primary and foreign keys in each relation; attribute data types and lengths; and whether attributes are optional or required. Organize the data dictionary alphabetically by relation name. Assessment Part I deliverables will be evaluated based on the completeness and correctness/accuracy of the conceptual and logical data models, and of the supporting documentation (i.e., data dictionary, assumptions (if any)). If any of the deliverables are hand-drawn/written, your submission will not be graded. Submit the deliverables as one or more files. Include your name and title of the project on every page of the documents you submit. Learn More
  7. MIS582 iLab 3 Report 5 Student Info by Status

    MIS582 iLab 4 Forms and Reports

    $15.00

    MIS582 iLab 4 Forms and Reports

    i L A B O V E R V I E W
    Scenario and Summary
    In this assignment, you will learn to create and save forms and reports in a provided Access database. To complete this assignment, you will need to be able to run Access 2010.

    Deliverables
    Name your Access database file using Lab4_, your first initial, and your last name (e.g., Lab4_JSmith.accdb). Create and save your Access database file. When you are done, submit your database to the Course Project Dropbox.

    i L A B S T E P S
    STEP 1
    • Download the Lab4_FormsReports.accdb database from Doc Sharing.
    • Rename the Lab4_FormsReports.accdb database with a name containing Lab4_, your first initial, and your last name as the file name (e.g., Lab4_JSmith.accdb).

    STEP 2:
    • Run Access 2010, either via Citrix or from Visio 2010 installed on your workstation.
    • Open the database you renamed in Step 1.

    STEP 3:
    Reports
    Create a report for each of the following requirements. Reports may be created using the wizard or an SQL query. Reports should follow the formatting guidelines given in the next step. Reports should be named as indicated below (e.g., Report1, Report2, etc.).
    1. Report1: Show Instructor information (Instructor_ID, First_Name, Last_Name) grouped by Approved Course_No.
    2. Report2: Show student information (Student_ID, First_Name, Last_Name, Status, Zip) grouped by Major.
    3. Report3: Show student information (Student_ID, First_Name, Last_Name, Major) grouped by Zip code. Zip codes should be in increasing order.
    4. Report4: Show student information (First_Name, Last_Name) grouped by Course Number and Course Name. Course Number should be in in increasing order.
    5. Report5: Show student information (Student_ID, First_Name, Last_Name, Address, Zip) grouped by Status. Students should be in alphabetical order by Last_Name and;then First_Name.

    STEP 4:
    Report Format
    • Reports should display two or more child rows for each parent row. For example, Report1 should display each Course_No with instructors who are approved to teach the course grouped under it. In this case, the parent row would be the Approved Course_No with Instructor listed as child rows underneath each parent row
    • There should be at least two child rows of data for each parent row. Add data to the tables in order to have reports show at least two child rows per parent.

    STEP 5:
    Form1: Create a form based on an SQL query.
    • Create and run an SQL query that displays Student Information (Student_ID, First_Name, Last_Name, Address, Zip).
    • Save the query in the database named Form1Query.
    • Create a form based on Form1Query. While Form1Query is selected, go to the Create menu and select Form to build the basic form.
    • Select the form and switch between the views (Forms, Layout, and Design) to change the properties or the form’s appearance as desired.
    • Save the form in the database named Form1Query.

    STEP 6:
    Form2: Create a form using the Form Wizard.
    • Invoke the Form Wizard as shown in the tutorials above.
    • Using the Form Wizard, create a form showing instructor information (Instructor_ID, First_Name, Last_Name, Office_No).
    • Switch between the views (Forms, Layout, and Design) to change the properties or the form’s appearance as desired.
    • Save the form in the database named Form2Wizard.

    STEP 7:
    Form3: Create a form using a master detail relationship. A master detail relationship is simply a 1:N relationship between two tables. Use subforms to format the form in a split data entry form as shown in Figure 1-9. You may use SQL queries or the wizard or both to create your form and subform.
    • Create a master form showing student information (Student_ID, First_Name, Last_Name, Address, Zip, Major, Status).
    • Create a detail Subform showing Student_ID, Class_ID, and Student_Grade.
    • For each student displayed, the student’s classes and grades should be displayed in the detail form.
    • Switch between the views (Forms, Layout, and Design) to change the properties or the form’s appearance.
    • Save the form in the database named Form3MaterDetail.

    STEP 8:
    When you are done, save the file on your local hard drive and upload it to the Course Project Dropbox. Your file should have the following filename format: Lab4_FirstInitialLastName.accdb.

    Learn More
  8. Access VBA Tutorial 11 Challenge Case Problem 2 Parkhurst Health Center

    Access VBA Tutorial 11 Challenge Case Problem 2 Parkhurst Health Center

    $20.00

    Case Problem 2
    Data File needed for this case problem: exercise.accdb (cont. from Tutorial 10)

    Parkhurst Health & Fitness Center Martha Parkhurst asks you to continue your work on the Exercise database by creating a new form and enhancing its accuracy and appearance. To help Martha with her request, complete the following steps:

    1. Open the Exercise database located in theAccess3\Case2 folder provided with your Data Files.

    2. Use the Form tool to create a form named frmMemberinfo using the tblMember table as the source table. Create a procedure for the frmMemberInfo form to convert City field values to proper case—capitalize the first letter of each word, and convert all other letters to lowercase. Test the procedure.

    3. Create a procedure to verify Phone field valuesin the frmMemberInfo form by doing the following:
    a. For a State field value of VA, the first three digits of the Phone field value must equal 703 or 804. If the Phone field value isinvalid, display an appropriate message, cancel the event, undo the change, and move the focus to the Phone field.
    b. No special action is required for other Phone field values.
    c. Test the procedure, and then save your form changes.

    4. Create a procedure for the frmMemberInfo form to do the following:
    a. Display the word current to the right of the MemberID text box in bold, magenta text only when the MembershipStatus field value is Active. Otherwise, display the
    word review in bold, blue text. (Hint: Remove all controlsfrom the control layout before resizing the MemberID text box and adding the label for the message. Use the Caption property in your VBA code, and make sure you enclose Caption property settings in quotation marks.)
    b. Test the modified form, and then save your form changes.

    5. Make a backup copy of the database, compact and repair the Exercise database, and then close the database.

    Learn More
  9. DBM 380 Art Museum database ERD

    DBM/380 Week 3 ERD Art Museum in Access

    $12.00

    Develop an Art Museum ERD for DBM/380 Week 3

    List the data specifications (must include a minimum of three entities with attributes)

    Has to be on An Art Museum that needs to track the artwork, artists, and locations where the art is displayed or stored within the museum If you Don't have Visio then Do a ERD in Access. Need this last week. Make sure the Database flows.

    Use a Microsoft® Visio® diagram to create a detailed ERD using the data specifications noted in the Week Two Individual Assignment. Make any necessary changes provided in your faculty's feedback.

    Use a Microsoft® Access® database to create the preliminary database tables, columns with data types, primary keys, and relationships.

    Learn More
  10. DBM 405 Lab 3 Step 1 Creating First  Procedure

    DBM 405 Lab 3 Procedures and Functions Advanced Database Oracle

    $20.00

    DBM 405 Lab 3 Procedures and Functions Advanced Database Oracle

    Step 1: Creating the First Procedure
    Your first procedure is to be named MOVIE_RENTAL_SP and is going to provide functionality to process movie rentals. Based on data that will represent the movie ID, member ID, and payment method your procedure will need to generate a rental ID and then insert a new row of data into the mm_rental table. The process will also need to update the quantity column in the mm_movie table to reflect that there is one less copy of the rented movie in stock. Along with the processing, you will also need to define some user-defined exception handlers that will be used in validating the input data. Since you may need to recreate your procedure several times during the debugging process, it is suggested that you use the CREATE OR REPLACE syntax at the beginning of the CREATE statement.

    The following steps will help you in setting up your code.
    1. You will need to define three parameters, one each for movie ID, member ID, and payment method. Make sure that each one matches the data type of the associated column in the database tables.
    2. You will have several other variables that will need to be identified and defined. It might be easier to read through the rest of the specs before you start trying to define these (look for hints in the specifications).
    3. You will need to define four user-defined exceptions; one for unknown movies, one for unknown member, one for unknown payment method, and one for if a movie is unavailable.
    4. You will need to validate each of the three pieces of data passed to the procedure. One easy way to do this might be to use a SELECT statement with the COUNT function to return a value into a variable based on a match in the database table against the piece of data that you are validating. If the query returns a zero then there is no match and the data is invalid; any value greater than zero means a match was found and thus the data is valid. You will need the following validations.
        1. Validate the movie ID to make sure it is valid. If not then raise the unknown movie exception.
        2. Validate the member ID to make sure one exists for that ID. If not then raise the unknown member exception.
        3. Validate the payment method to make sure it exists. If not then raise the unknown payment method exception.
        4. Check the movie quantity to make sure that there is a movie to be rented for the movie ID. If not then raise the unavailable movie exception.
        5. If all the data passes validation then you will need to create a new rental ID. This process should be in a nested block with its own EXCEPTION section to catch a NO_DATA_FOUND exception if one should happen. You can generate a new rental ID by finding the largest rental ID value in the mm_rental table (Hint: MAX function) and then increasing that value by one. The NO_DATA_FOUND exception would only be raised if there were no rental IDs in the table.
        6. Now you are ready to insert a new row of data into the mm_rental table. Use the SYSDATE function for the checkout date and NULL for the check-in date.
        7. Now, update the mm_movie table to reflect one less movie for the associated movie ID.
        8. Finally, you will need to set up an EXCEPTION section for all of your exception handling. For each exception output, you want to state what the problem is, the invalid data value, and a note that the rental cannot proceed. For example, for an invalid movie ID number, you might say, "There is no movie with id: 13 - Cannot proceed with rental". You also want to include a WHEN OTHERS exception handler.

    Compile and check your code. If you get a PROCEDURE CREATED WITH COMPILATION ERRORS message then type in SHOW ERRORS and look in your code for the line noted in the error messages (be sure to compile your code with the session command SET ECHO ON). Once you have a clean compile then your are ready to test.


    Step 2: Testing the First Procedure
    You will need to test for scenarios that will allow both a clean movie rental and test each exception. This means that you will need to run at least five test cases.

    One each for the following:
    1. No movie for the ID supplied (use 13, 10, and 2 for the parameters).
    2. No member for the ID supplied (use 10, 20, and 2 for the parameters).
    3. No payment method for the ID supplied (use 10, 10, and 7 for the parameters).
    4. A successful rental (use 5, 10, and 2 for the parameters).
    5. No movie available for the ID supplied (use 5, 11, and 2 for the parameters). Since there is only one movie available for ID 5, you will get this exception.
    Your output from the testing should look similar to (this would be the output for the first test above):
    exec movie_rent_sp(13, 10, 2);
    Output:
    There is no movie with id: 13
    Cannot proceed with rental
    PL/SQL procedure successfully completed.

    Be sure that when you have verified that everything works, you run your testing in a spools session and save the file to be turned in.


    Step 3: Creating the Second Procedure
    Your second procedure should be named MOVIE_RETURN_SP and should facilitate the process of checking a movie rental back in. For this procedure, you will only need to pass one piece of data to the procedure; the rental ID. You will need two user-defined exceptions; one for no rental record and one for already returned. You will be able to use several of the same techniques you used in the first procedure for your validation.

    The following steps will help in setting up your code.
    1. You will need to define only one parameter for the rental ID number. Make sure that it matches the data type of the associated column in the database table.
    2. You will have several other variables that will need to be identified and defined. It might be easier to read through the rest of the specs before you start trying to define these (look for hints in the specifications).
    3. You will need to define the two user-defined exceptions mentioned above.
    4. You will need to validate the rental ID that is passed to the procedure. If it is not a valid one then raise the associated exception.
    5. If it is valid then get the movie ID and check-in date from the mm_rental table.
    6. Now, check the check-in date to make sure that it is NULL. If it is not then raise the associated exception.
    7. If everything checks out then update the mm_rental table for the rental ID you have and use the SYSDATE function for the check-in date.
    8. Now, you can update the quantity in the mm_movie table for the associated movie ID to reflect that the movie is back in stock.
    9. Last, set up your exception section using appropriate error message text and data.

    Compile and check your code. If you get a PROCEDURE CREATED WITH COMPILATION ERRORS message then type in SHOW ERRORS and look in your code for the line noted in the error messages (be sure to compile your code with the session command SET ECHO ON). Once you have a clean compile then your are ready to test.


    Step 4: Testing the Second Procedure
    You will need to test for scenarios that will allow both a clean rental return and test each exception. This means that you will need to run at least three test cases.

    One each for the following:
    1. No rental for the ID supplied (use 20 for the parameter).
    2. A successful rental return (use 1 for the parameter).
    3. Try to return the same rental in Step 2.
    You output from the testing should look similar to (this would be the output for the first test above):
    exec movie_return_sp(20);
    Output:
    There is no rental record with id: 20
    Cannot proceed with return
    PL/SQL procedure successfully completed.

    Be sure that when you have verified that everything works, you run your testing in a spools session and save the file to be turned in.


    Step 5: Creating the Function
    Your function should be named MOVIE_STOCK_SF and will be used to return a message telling the user whether a movie title is available or not based on the movie ID passed to the function. The exception handling that will be needed is for NO_DATA_FOUND but we are going to set it up as a RAISE_APPLICATION_ERROR.

    The following steps will help in setting up your code.
    1. You will need to define only one parameter for the movie ID number. Make sure that it matches the data type of the associated column in the database table. Also, since you will be returning a notification message, you will want to make sure your RETURN statement references a data type that can handle that (Hint: variable length data type).
    2. You will have several other variables that will need to be identified and defined. It might be easier to read through the rest of the specs before you start trying to define these (look for hints in the specifications).
    3. You will not be doing any validation so the first thing you need to do is retrieve the movie title and quantity available from the mm_movie table based on the ID passed to the function.
    4. Now, you need to determine if any are available. IF the value in the quantity column is greater than zero then you will be returning a message saying something like "Star Wars is available: 0 on the shelf", ELSE if the value is zero then you should return a message saying something like "Star Wars is currently not available". Hint: A good way to return a test string is to assign it to a variable and then simply use the variable name in the RETURN clause.
    5. Finally, set up your exception section to use a RAISE_APPLICATION_ERROR for the NO_DATA_FOUND exception handler. Assign an error number of -20001 to it and an error message that states there is no movie available for the ID (be sure to include the id in the message).

    Compile and check your code. If you get a FUNCTION CREATED WITH COMPILATION ERRORS message then type in SHOW ERRORS and look in your code for the line noted in the error messages (be sure to compile your code with the session command SET ECHO ON). Once you have a clean compile then your are ready to test.


    Step 6: Testing the Function
    You will need to test for all three possible scenarios.

    1. Test for a movie in stock using movie ID 11.
    2. Test for a movie not in stock using movie ID 5 (from your tests of the second procedure above, the quantity should be 0).
    3. Test for an invalid movie ID using movie ID 20.
    For test number 2, you may need to manipulate the quantity amount in the database, which will be fine.
    Test your function by using a select statement against the DUAL table like in the example below:
    select movie_stock_sf(20) from dual;

    Be sure that when you have verified that everything works, you run your testing in a spools session and save the file to be turned in.
    This concludes the Lab for Week 3.
     
    Deliverables
    Your deliverable submission should consist of your Lab 3 script file and the spooled output files described at the beginning of the lab. If you would like, you can include both files in a single ZIP file to be submitted to the Week 3 Lab Dropbox.

    Learn More

Items 11 to 20 of 222 total

per page
Page:
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5

Grid  List 

Set Descending Direction
[profiler]
Memory usage: real: 15204352, emalloc: 14786208
Code ProfilerTimeCntEmallocRealMem